Robust parameter design of mixed multiple responses based on a latent variable Gaussian process model

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Gaussian Process Latent Variable Model

We introduce a variational inference framework for training the Gaussian process latent variable model and thus performing Bayesian nonlinear dimensionality reduction. This method allows us to variationally integrate out the input variables of the Gaussian process and compute a lower bound on the exact marginal likelihood of the nonlinear latent variable model. The maximization of the variation...

متن کامل

Occlusion robust pose and model estimation using Gaussian Process Latent Variable Model on GPU

In this project, we would like to develop multi-object pose and model estimation which uses the 3D voxelized model and foreground background segmentation to detect 3D pose and model variation. In the relevant literature, [4], the authors used gradient descent to minimize the optimization energy function which is the integration over image multiplied by the smoothed step function of SDF of 3D mo...

متن کامل

A Bayesian semiparametric latent variable model for mixed responses

In this article we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric predictor. We extend existing LVM with simple linear covariate effects by including nonparametric components for nonlinear effects of continuous covariates and interactions with other cova...

متن کامل

A Bayesian semiparametric latent variable model for mixed responses

In this article we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric predictor. We extend existing LVM with simple linear covariate effects by including nonparametric components for nonlinear effects of continuous covariates and interactions with other cova...

متن کامل

Semi-supervised Gaussian process latent variable model with pairwise constraints

In machine learning, Gaussian process latent variable model (GP-LVM) has been extensively applied in the field of unsupervised dimensionality reduction. When some supervised information, e.g., pairwise constraints or labels of the data, is available, the traditional GP-LVM cannot directly utilize such supervised information to improve the performance of dimensionality reduction. In this case, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Engineering Optimization

سال: 2022

ISSN: ['1029-0273', '0305-215X', '1026-745X']

DOI: https://doi.org/10.1080/0305215x.2022.2124982